Posted on

Do we know what “maker” means?

Credits | ByLinedu

The Make in Class project is developing different tools for secundary teachers  to use maker-based activities with students to develop teaching-learning processes, and especially to reduce school failure. Perhaps it would be interesting to start by defining what are exactly maker based activities.

The maker movement

Credits | ByLinedu

In 2005, Dale Dougherty launched the magazine “Make” where the concerns of many people who liked to “make” things were collected. In 2006 he launched the Maker Faire event where the “makers” show their projects year after year. From there, the movement grew until our days in which people of all ages with more or less knowledge about technology has joined this movement that even has its own Manifesto.

The maker movement promotes the idea that all people are capable of developing any object, “do it yourself” (DIY), instead of ordering it or buying it.
The maker movement is a social movement that began with craft manufacturing and where digital interaction and manufacturing methods have been quickly integrated mainly due to 3 factors:
1. The integration of electrical and electronic components.
2. The emergence of digital tools for design and manufacturing with affordable sizes and prices: 3D modeling programs, 3-D printers, laser cutters, 3-D scanners.
2. Social and collaborative digital media, which have fostered collaborative innovation on the web and where innumerable open source digital practices are shared.

What are “maker based activities”?
They are activities, challenges, personal fabrication projects with the “do it yourself” philosophy where creativity, autonomy and collaboration are essential factors.

These activities can range from traditional manufacturing:

  • simple objects with traditional materials (paper, cardboard, plastic, light plywood, etc.),
  • objects with recycled materials (boxes, light containers, toys, etc.),

up to digital manufacturing:

  • physical objects to which are added electrical components (cables, switches, batteries, …)
  • electronics (resistors, transistors, sensors, motors, LEDs, displays, …)
  • modeling and 3D printing
Credits | Fablab München

For more than 10 years, communities of people and companies interested in programming and electronics have developed technology that makes it easy to connect, control and interact with physical objects directly or even through the Internet using mobile devices such as our mobile phone. For example: Arduino or Raspberry Pi circuit boards that can be “programmed” from the computer.
Thanks to the technology of “programming by blocks”, to start coding is as simple as assembling pieces of a puzzle.

It can be said that technology is becoming more “inclusive”. You can “manufacture” projects with simple technology and with little money thanks to electronic components are becoming cheaper and because there are many software applications with free or open source versions.

The computer and mobile devices, such as phones or tablets, have become a tool where hundreds of programs can be used to “create” and perhaps for this reason, the concept “maker” sometimes transcends the idea of ​​creating projects with only “tangible” elements. Makers creativity sometimes need to use software apps to complete their projects.
In other words, we can “manufacture” a virtual object with 3D modeling software to be printed and maybe we need also create with this object a digital film through video recording and editing.In short, we can say that a “maker” activity is always creative and it has a simple or complex project behind it.

 

The degree of integration of technology will depend on different factors: age, knowledge and skills on different techniques and technologies of people “maker”, type of workspace, equipment, budget, personal, professional or educational objective, etc.

Credits | Fablab München

Education and the maker culture

Active learning ( “learning by doing”), teamworking, solving problems in a collaborative way, autonomy or creativity are being key in the new methods of learning in schools, and these elements are adjusted to the DNA of the maker movement.
“Tell me, I forget. Show me, I remember. Involve me, I understand.”
At present, there is a great interest to develop in the students basic and professional competences that still cost to develop in the classrooms.

It is for these reasons that teachers are interested in everything that has the name “maker”, and begin to experience this type of activities, initially in the subjects related to STEAM areas: Science, Technology, Engineering, Art and Maths.
But….if these activities are implemented beyond the scope of technology subjects?

Leave a Reply

Your email address will not be published.